Liversity of Idaho

Concepts in Toxicology

Food Toxicology Instructor: Gregory Möller, Ph.D. University of Idaho

Learning Objectives

- Define toxicology and toxicity.
- Discuss different types of toxic responses.
- Explain how toxicants are classified.
- Describe the phases of toxicosis.
- Explain how concomitant exposure influences toxicity.
- Develop an introductory understanding of toxicity testing.

Toxicology

- The science that deal with the adverse effects of chemicals on living systems.
- Classifications.
- Descriptive toxicology.What?
- Mechanistic toxicology.
 Whv?
- Analytical toxicology.How much?

Definition of Toxicity

- Toxicity: The degree to which a substance can harm humans or animals.
- Toxicity can be acute, subchronic, or chronic.

Acute Toxicity

• Involves harmful effects in an organism through a single or short-term exposure.

The Death of Socrates, 1787 Jacques-Louis David (Metropolitan Museum of Art, New York)

Subchronic Toxicity

• The ability of a toxic substance to cause effects for more than one year but less than the lifetime of the exposed organism.

Chronic Toxicity

• The ability of a substance or mixture of substances to cause harmful effects over an extended period, usually upon repeated or continuous exposure, sometimes lasting for the entire life of the exposed organism.

Specialty Areas in Toxicology

• Target Organ/System.

Neurotoxicology, Genetic Toxicology, Reproductive Toxicology, Immunotoxicology, Endocrine Toxicology.

Target Species/Systems.

- Aquatic Toxicology, Environmental Toxicology, Wildlife Toxicology, Veterinary Toxicology.
- Selected Responses.
 - Teratology, Carcinogenesis.

Applied Toxicology

- Occupational toxicology.
- Clinical toxicology.
 Toxic induced diseases and antidotes. • Forensic toxicology.
- Determining causes of death.
- Regulatory toxicology. Risk assessment from descriptive tests
- Developmental toxicology.
 - New chemicals and uses.

Classification of Toxicants

• Target organ.

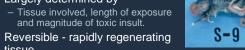
- Hepatotoxin, neurotoxin.
- Intended use.
- Pesticide, solvent.
- Source.
 - Natural, synthetic.
- Special effect. - Carcinogen, mutagen, endocrine disruptor.

- Anticholinergic, inhibitor, uncoupler.

Types of Toxic Responses

Local.

12


- Effect at site of contact.
- GIT, lungs.

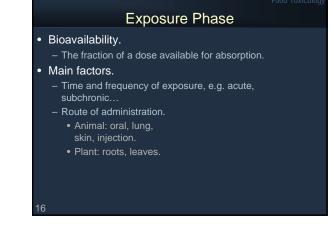
• Systemic.

- Effect distant from exposure site.
- CNS, kidney, lungs.
- Some both.
- Immediate. - Minutes to hours
 - after a single exposure.
- Delayed.
- Days to years after exposure.
- · Some both.

Types of Toxic Responses, 2

- Reversible vs. Irreversible
- Largely determined by
- Tissue involved, length of exposure and magnitude of toxic insult.




- tissue.
- Liver, intestinal mucosa, blood cells.

Irreversible

- CNS damage, carcinogenesis, mutagenesis, teratagenesis.

Bioavailability Octanol-Water Partition Coefficient, Kow An empirical solubility term that can be used to assess transmembrane movement potential. $K_{ow} = 10^2$ to 10^3 indicates good chemical for absorption $(Log K_{ow} = 2 \text{ to } 3).$ OK lipid solubility and OK water solubility. $K_{ow} = [T]_{octanol} / [T]_{water}$

- Dose.

- Physical and chemical form of the toxicant. • Particle size.

-Host related factors. -Pre-absorption metabolism.

Absorption Phase • Comparative aspects. - Cellular to organism. • Membrane morphology. - Lipoprotein bilayer. Physiochemical processes that govern transmembrane movement. - Lipid-water solubility, Kow

- Ionization (pK_a),
- functional groups
- Molecular size and conformation.
- 18

Absorption Phase, 2

- Transmembrane movement.
 - Simple diffusion Fick's Law.
 - Filtration aqueous pores.
 - Carrier mediated.
- Sites of Absorption.
 - Animals GIT, dermal, lung.
 - Plants stomatal pores, cuticle, roots.
 - Insects pore canals, oral.
 - Fish gills, GIT, dermal.

Distribution Phase

Sea snake neurotoxin

Four fates. – Site of toxic action, storage,

metabolism, excretion.

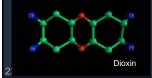
How it occurs.

- Animals blood, lymph.
- Plants xylem and/or phloem.

Barriers of toxicological

- significance.
- Blood/brain.
- Placental (maternal fetal).
- Mammary (blood milk).

Distribution Phase, 2


· Factors affecting distribution.

- Affinity of tissues for the xenobiotic.
- Blood flow, protein binding.
- Route of administration, rate of metabolism.

• Redistribution.

- Enterohepatic recirculation.

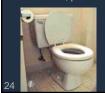
Metabolism Phase Phase I – Bioconversion. – Factors affecting toxicity and metabolism. • Environmental, genetic... Phase II – Conjugation. – "Grease to salt"

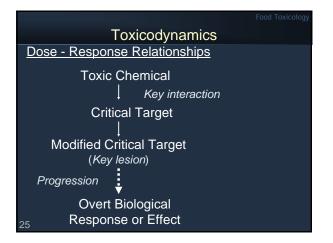
Factors Influencing Toxicity

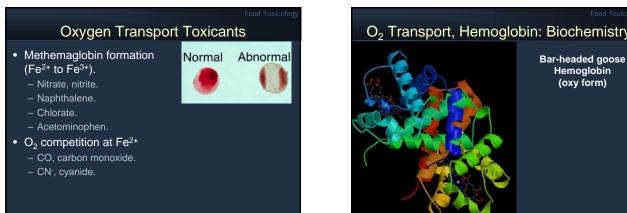
$\frac{\text{Concomitant Exposure}}{2+2} = 4$

Additive

- 2 OP's leading to cholinesterase inhibition.
 Synergistic 2 + 2 = 10
- CCl₄ with ethanol leading to hepatotoxicity.
- Potentiation 2 + 0 = 6


 Isopropanol with CCl₄, tumor promoters.
- Antagonism 2 +2 = 0


 BAL with heavy metals, antidotes.


Excretion

- Toxicological significance.
- Renal excretion.
- Non-renal excretion.
- Biliary, expiration, gastric secretion...
- Comparative aspects.
 Animals, plants.

Intrinsic Activity Intrinsic activity: $T + R \implies TR$ response - Ágonist - substances "Response" with intrinsic activity, Drugs – Typically reversible. Toxicants – Typically non-reversible. e.g. O_2 Antagonist substances that work against agonist, e.g. CO

	Toxicity Rating – Oral Human Dose					
	Class	Dose	For Average Adult			
	Practically non-toxic	>15 g/kg	More than a quart			
	Slightly toxic	5-15 g/kg	Between a pint and a quart			
	Moderately toxic	0.5-5 g/kg	Between an ounce and a pint			
	Very toxic	50-500 mg/kg	Between a teaspoonful and an ounce			
	Extremely toxic	5-50 mg/kg	Between 7 drops and a teaspoonful			
	Supertoxic	<5 mg/kg	A taste (<7 drops)			
29 Cassarett and Doull						

			Food Toxicology		
Spectrum of Toxic Dose					
	Agent	LD ₅₀ (mg/kg)	Fish berry		
	Ethanol	10,000	(Ang		
	NaCl	4,000	1 Alexandre		
	Ferrous sulfate	1,500			
	Morphine sulfate	900			
	Phenobarbitol	150	Ananima paktulata		
	DDT	100			
	Picrotoxin	5			
	Strychnine sulfate	2			
	Nicotine	1			
	d-Tubocurarine	0.5			
	Tetrodotoxin	0.1			
	Dioxin (TCDD)	0.001			
30	Botulinus toxin Cassarett and Doull	0.00001			

O₂ Transport, Hemoglobin: Biochemistry